

Природный газ MZ=80

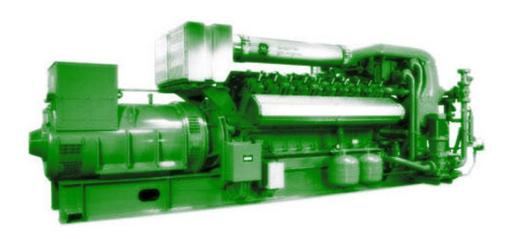


Рис.: Символическое изображение, может отличаться от описанного модуля

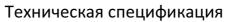
Готовая к подключению компактная блочная Водяные контуры, встроенные в модуль, состоят в основном и теплоэлектроцентраль в основном состоит из следующих узлогследующих узлов:

- серийный промышленный газовый двигатель внутреннего сгорания;
- синхронный генератор с воздушным охлаждением;
- теплообменник отработанных газов, встроенный в первичный контур охлаждения:
- окислительный катализатор, вмонтированный в теплообменник отработанных газов (опция);
- запасной масляный резервуар с автоматической подпиткой масла;
- распределительный шкаф с системой программного управления и блоком управления;
- система регулирования давления газа и обеспечения
- соединения воды и газа, оборудованные компенсаторами

- расширительный бак в контуре двигателя, смесительном и нагревательном контуре:
- арматура для заполнения, опорожнения и удаления воздуха;
- передаточный пластинчатый теплообменник;
- насосы для воды охлаждения двигателя, воды охлаждения смеси и нагревательного контура;
- 3-ходовой смесительный клапан для повышения температуры обратного потока:

Двигатель и генератор соединены между собой через сменную упругую металлопластиковую муфту для компенсации радиального, осевого и углового смещения и установлены на станине с демпфированием колебаний.

Дополнительно станина отсоединена от места установки элементом с развязкой по колебаниям.

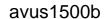

Распределительный шкаф выполнен в виде отдельного блока. В нем реализованы все функции управления и регулирования, а также встроены элементы управления. С помощью дисплея с меню можно считать и установить все рабочие характеристики и параметры состояния.

В качестве привода установлен газовый двигатель внутреннего сгорания с водяным охлаждением и турбонаддувом. Система зажигания с микропроцессорным управлением обеспечивает оптимальное согласование момента и энергии зажигания с составом газа (метановым числом).

Регулирование параметра лямбда происходит без лямбда-зонда с помощью программы расчёта, которая по значениям фактической мощности, давления наддува и температуры смеси определяет оптимальное значение параметра лямбда для каждого режима работы.

Двухступенчатая система охлаждения смеси с низко- и высокотемпературным контуром обеспечивает особенно высокий электрический коэффициент полезного действия, а также оптимальное использование термической мощности от тепла смеси.

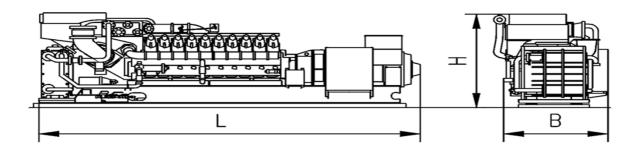
19.09.2012



avus1500b

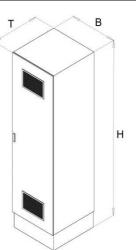
Природный газ MZ=80

Парамотры і пригатопп	Ги	50	Лроизводственные мат	епиапы лпа лі	Вигатела		
Параметры двигателя	Гц	50	Производственные мат	ериалы для д	Бигатели		
Охлаждение смеси до	$\mathcal C$	45	Расход смазочного масла	a		кг / ч	0,4239
Номинальное число оборотов	1/мин	1500	Заправочный объём мото	рного масла		1	437
Стандартная мощность (мех.)	кВт	1451					
согласно ISO			Заправочный объем охла	ждающей водь	ol	1	
Конструктивная модель		V 70°	Макс. рабочее давление			бар	2,5
Количество цилиндров		20	Количество охлаждающей воды, циркулирующей в			·	
Отверстие	MM	145	контуре (мин.)			м³/ч	61,9
Ход	MM	185	Температура охлаждающей воды на входе двигателя			C	76,3
Рабочий объём	1	61,1	Температура охлаждающей воды на выходе двигателя			C	81,4
		2.,.	Разность температур (на входе/выходе, макс.):				5,1
Направление вращения при взгляде							
на маховик		links	Температура смеси на вх	оде после дро	ссельного		
Степень сжатия	3	12,5	клапана (макс.)			${\mathcal C}$	45
Среднее эффективное давление	бар	18,9984	Вода для охлаждения смеси, температура на входе в				
Средняя скорость поршня	м/с	9,25	низкотемпературный контур (макс.)			$\mathcal C$	40
			Количество воды для охлаждения смеси, циркулирун		и, циркулирующе	ей в	
Характеристики мощности	Гц	60	низкотемпературном конт	гуре (мин.)		м³/ч	20
Нагрузка	%	100	Коэффициенты полезного действия				
Момент зажигания до верхней				<u> </u>			
мертвой точки	градусов	variabel	Нагрузка	%	100	75	50
Стандартная мощность (мех.)			Электрический	%	42,9		
согласно ISO	кВт	1451	Механический	%	44,0		
Электрическая мощность	kW el	1413	Термический	%	43,8		
Тепло охлаждающей жидкости	кВт	545	Общий (эл. + терм.)	%	86,7		
Тепло смеси в низкотемпературном					•		
контуре	кВт	88	Отношение электрическо	й мощности	0,98	#DIV/0!	#DIV/0!
Тепло отработанного газа при					-,		
температуре до 180 ℃	кВт	623	Массовые и объёмные потоки				
Используемая термическая мощность							
при температуре 180 ℃	кВт	1442	Массовый поток воздуха для горения топлива			кг / ч	7254
Тепло излучения модуля (макс.)	кВт	180	Объёмный поток воздуха для горения топлива			нм ³ /ч	5611
Мощность топлива	кВт	3295	Объёмный поток приточного воздуха (мин.)			м ³ /ч	32840
Расход топлива (мех.)	кВтч/кВтч	2,271	Массовый поток топлива			, . кг/ч	278
Расход топлива (эл.)	кВтч/кВтч		Объёмный поток топлива			м ³ /ч	347
., , ,		,					
Значения температуры и давления			Массовый поток влажного отработанного газа			кг / ч	7491
			Массовый поток сухого о	тработанного га	аза	кг / ч	6959
Температура отработанного газа			Объёмный поток влажного отработанного газа		м³/ч	5918	
после турбины	${\mathbb C}$	390	Объёмный поток сухого отработанного газа			М³/Ч	5279
Противодавление отработанного			Объёмный поток нагрева	тельной воды ((макс.)	М³/Ч	82,6
газа (макс.)	мбар	60					
Температура нагревательной воды			Технические граничные	условия			
в обратном потоке (макс.)	${\mathfrak C}$	70					
Температура нагревательной воды			Условия работы согласно	DIN-ISO-3046			
в прямом потоке (макс.)	${\mathbb C}$	90	Стандартные условия: давление воздуха: 1000 мбар,				
Падение давления в			Температура воздуха: 25	℃, отн. влажн	ость воздуха: 30	%	
нагревательном контуре (макс.)	мбар	200	Качество газа соответствует требованиям документа «ТА 1000-0300				
Разрежение на впуске (макс.)	мбар	10	качество рабочего газа»				
	•		Все данные относятся к г	олной нагрузке	е двигателя при	указаннь	ıx
Параметры эмиссии при доле остато	очного		температурах среды и де	йствуют с сохр	анением прав н	а дальне	йшее
кислорода 5 %			усовершенствование. Об		•		
			выполнены согласно техн	ническим требо	ваниям. При уст	ановке н	а
NO	NAT / 11NA 3	< 500	высоте > 400 м и/или при температуре всасываемого воздуха > 30 ℃				
NOx	мг / нм ³	< 500	BBICOTE > 400 IN N/NITIN TIPN	температуре в	Cacbibae WOLO BC	здуха 🖊 С	



Природный газ MZ=80

Параметры генератора			Основные габаритные размеры и вес		
Изготовитель		Leroy Somer	Генераторный агрегат:		
Тип		LSA 52.2 L70	Длина (Д):	ММ	7100
Типовая мощность	кВА	1970	Высота (В):	ММ	2200
Напряжение (3 фазы)	V	400	Ширина (Ш):	ММ	1800
Частота	Гц	50	Вес, сухой (ок.)	ΚΓ	16000
Расчётное число оборотов	1/мин	1500			
Номинальный ток при cos φ = 0,8	Α	2524,122249	Распределительный шкаф с системой управления:		
cos φ		1	Высота (В):	ММ	2200
Коэффициент полезного действия			Ширина (Ш):	ММ	1000
(при полной нагрузке) при cos φ = 1	%	97,4	Глубина (Г)	ММ	600
Коэффициент полезного действия			Вес (ок.)	ΚΓ	240
(при полной нагрузке) при cos φ = 0,8	%	96,4			
Реактивное сопротивление Xd	p.u.	2,07	Силовая часть распределительного шкафа:		
Реактивное сопротивление X'd	p.u.	0,19	Высота (В):	ММ	2200
Реактивное сопротивление X"d	p.u.	0,1	Ширина (Ш):	ММ	600
Момент инерции масс	КГ / M ³	47,8	Глубина (Г)	ММ	600
Схема статора		звезда	Вес (ок.)	ΚΓ	120
Температура окружающей среды, макс.	C	40			
Тип защиты		IP 23			


Параметр Соs ϕ устанавливается между индуктивным значением 0,8 и ёмкостным значением 0,95. Точное значение, как правило, устанавливается поставщиком энергии.

Модуль:

Распределительный шкаф с системой управления: Силовая часть распределительного шкафа:

